A NOTE ON THE RGULARITY OF A CLASS OF STABLE IDEALS

Imran Anwar^{*,1}, Sardar Mohib Ali Khan²

¹COMSTAS Institute of Information Technology Lahore, Pakistan ² COMSTAS Institute of Information Technology Islamabad, Pakistan

imrananwar@ciitlahore.edu.pk, mohib.ali@comsats.edu.pk

ABSTRACT. In this paper, we give an upper bound of the Castelnuovo-Mumford regularity of a class of stable ideals. We discuss those stable ideals, whose associated prime ideals are totally ordered under inclusion and whose irreducible primary decomposition consists the ideals of the type $(x_1^{\alpha_1}, \dots, x_r^{\alpha_r})$ with

 $r \geq 3$ and $r-1 \geq \alpha_1 \geq \cdots \geq \alpha_r = 1$. We name these ideals as α -ideals.

Key Words: Stable ideals, Castelnuovo-Mumford regularity, Primary decomposition. 2000 Mathematics Subject Classification: Primary 13P10, Secondary 13H10, 13F20, 13C14

1. INTRODUCTION

Let $S = K[x_1, ..., x_n], n \ge 2$ be the polynomial ring over the infinite field K and $I \subseteq S$ a monomial ideal. Let G(I) be the minimal set of monomial generators of 1 and deg (1) the highest degree of a monomial of $G(\mathbf{I})$. Given a monomial $\mathbf{u} \in \mathbf{S}$ set $\mathbf{m}(\mathbf{u}) = \max\{\mathbf{i} : \mathbf{x}_{\mathbf{i}} | \mathbf{u}\}$ and $\mathbf{m}(\mathbf{i}) = \max_{\mathbf{u} \in \mathcal{G}(\mathbf{i})}$ m(u). If $\beta_{ij}(I)$ are the graded Betti numbers of I then the regularity of I is given by reg(I) = max $\{i - i | \beta_{ii}(I) \neq 0\}$. Set q(l) = m(l)(deg(l) - 1) + 1. In [4, Remark 2.5] authors sowed that $reg(\mathbf{I}) \leq q(\mathbf{I})$ for a homogeneous ideal \mathbf{I} of height **n** (clearly, $\mathbf{m}(\mathbf{i}) = \mathbf{n}$ in this case). Bayer and Mumford [2], Caviglia and Sbarra [4] and Mayr and Meyer [8] showed that the regularity of a homogeneous ideal could grow exponentially with respect to its degree. A monomial ideal I is stable if for each monomial $u \in I$ and $1 \le j < m(u)$ it follows $x_j u / x_m(u) \in I$. If I is so called p-Borel ideal then $reg(1) \leq ndeg(1)$ as Popescus proved in [9]. Ahmad, Anwar [1] and Cimpoeas [5] showed that for a monomial ideal I whose associated prime ideals are totally ordered under inclusion, $reg(\mathbf{I}) \leq q(\mathbf{I})$. Let $\mathbf{I} \subset \mathbf{S} = \mathbf{k}[\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$ be a monomial ideal with

The form $\mathbf{C} = \mathbf{x}_{1} \mathbf{x}_{2}, \dots, \mathbf{x}_{n}$ be a monomial ideal with irreducible primary decomposition $\mathbf{I} = \bigcap_{i=1}^{s} \mathbf{Q}_{i}$ where each \mathbf{Q}_{i} is of the form; $\mathbf{Q}_{i} = (\mathbf{x}_{1}^{\alpha_{1}}, \mathbf{x}_{2}^{\alpha_{2}}, \dots, \mathbf{x}_{r_{i}}^{\alpha_{r_{i}}})$ with $\mathbf{r}_{i} \geq 3$ and $\mathbf{r}_{i} - 1 \geq \alpha_{i} \geq \dots \geq \alpha_{r_{i}} = 1$. We call such ideals as α -*Ideals*. For more detail about irreducible ideals and irredundant irreducible primary decomposition of a monomial ideal see ([10, Theorem 5.1.17]). In this paper we give an upper bound on the regularity of α -ideals.

We should mention that our presentation was improved by the kind suggestions of any anonymous Referee.

2. Stability of the α-Ideals

Let k be an infinite field. Let $S = k[x_1, ..., x_n], n \ge 2$ be the polynomial ring over k and $I \subseteq S$ a monomial ideal. Let $I_{s,\tilde{q}(1)}$ be the ideal generated b the monomials of I of degree $\ge \tilde{q}(1)$.

Definition 2.1 A monomial ideal $\mathbf{I} \subseteq \mathbf{S}$ with

$$\mathbb{I} = \bigcap_{i=1}^{\alpha_1} (x_1^{\alpha_1}, \dots, x_{r_i}^{\alpha_{r_i}})$$

is said to be an *a*-ideal if

(i) $3 \leq r_1 < r_2 < \cdots < r_8 = n$ and (ii) $r_1 - 1 \geq \alpha_1 \geq \cdots \geq \alpha_{r_1} = 1$ for all $1 \leq i \leq s$. Example 2.2 Let $S = k[x_1, x_2, x_3, x_4, x_5, x_6]$, then the monomial ideal

 $I = (x_1, x_2, x_3) \cap (x_1^2, x_2^2, x_3, x_4) \cap (x_1^3, x_2^3, x_3^3, x_4^2, x_5, x_6)$ is an α -ideal.

Definition 2.3 Let $I = \bigcap_{i=1}^{s} Q_i \subset S$ be an α -ideal with $Q_i = \left(x_1^{\alpha_1}, x_2^{\alpha_2}, \dots, x_{r_i}^{\alpha_{r_i}}\right)$, then we define $\tilde{q}(I)$ as follows: $\tilde{q}(I) = \max\{\tilde{q}(Q_i)|1 \le i \le s\}$. Where, we set $\tilde{q}(Q_i) = \sum_{i=1}^{r} \alpha_i$. **Proposition 2.4** The monomial ideal $I = \left(x_1^{\alpha_1}, \dots, x_r^{\alpha_r}\right) \subset S$ has $I_{\tilde{q}(I)}$ stable for $r \in \{3, \dots, n\}$ and $r - 1 \ge \alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_r = 1$, where $\tilde{q}(I) = \sum_{i=2}^{r} \alpha_i$. **Proof** Let $u \in I_{2\tilde{q}(I)}$ be a monomial. From above we get $u = v \cdot x_j^{\alpha_j}$ for some $I \le j \le r$ and $v \in (x_1, \dots, x_n)^{\tilde{q} - \alpha_j}$. If m(u) > f, then $\frac{x_k}{x_m(u)}$, $u = \left(\frac{x_k \cdot v}{x_m(u)}\right) \cdot x_j^{\alpha_j} \in I_{2\tilde{q}(I)}$ for all k < m(u).

If $\mathbf{m}(\mathbf{u}) = \mathbf{j}$ then \mathbf{u} belongs to the stable ideal $(\mathbf{x}_1, ..., \mathbf{x}_n)^{\mathbf{q}(\mathbf{i})}$ and it is enough to show that $(\mathbf{x}_1, ..., \mathbf{x}_n)^{\mathbf{q}(\mathbf{i})} \subset I_{\underline{\mathtt{s}}\mathbf{q}(\mathbf{i})}$. Let $\mathbf{w} \in (\mathbf{x}_1, ..., \mathbf{x}_n)^{\mathbf{q}(\mathbf{i})}$ then $\mathbf{w} = \mathbf{x}_1^{\alpha_1} \mathbf{x}_2^{\alpha_2} ... \mathbf{x}_n^{\alpha_n}$ with all $\alpha_i \ge 0$ and $\sum_{i=1}^n \alpha_i \ge \mathbf{q}(\mathbf{i}) = \sum_{i=2}^r \alpha_i$. Now we will prove that there exist some \mathbf{k} such that $\mathbf{1} \le \mathbf{k} \le \mathbf{n}$ with $\alpha_k \ge \alpha_k$. Suppose that there does not exist such \mathbf{k} , that is $\alpha_i < \alpha_i$ for all $\mathbf{i} \in \{1, ..., n\}$. Therefore from the above summations

 $\begin{aligned} \alpha_i \geq (\alpha_2 - \alpha_2) + (\alpha_3 - \alpha_3) + \cdots + (\alpha_n - \alpha_n) \\ \text{As } \alpha_i > \alpha_i, \text{ so we have } \alpha_1 \geq n - 1, \text{ it implies } \alpha_1 > n - 1, \\ \text{which is a contradiction.} \\ \text{So we can take above } v = x_1^{\alpha_1} \cdots x_k^{\alpha_k - \alpha_k} \cdots x_n^{\alpha_n}. \end{aligned}$

Remarks 2.5 In general one cannot get $I_{q(D-1)}$ stable, when $I = (x_1^{\alpha_1}, x_2^{\alpha_2}, ..., x_r^{\alpha_r})$ with

 $n-1 \ge \alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_r = 1$. For example, for r = 3 and $I = (x_1^2, x_2^2, x_3)$ then $\tilde{q}(I) = 3$ and clearly I_{22} is not stable.

Now we recall the following results from [1].

Proposition 2.6 [1] If $I_{e}J$ are monomial ideals such that $I_{q(D)}$ and $J_{eq(D)}$ are stable ideals, then $(I \cap J)_{emex} (q(D,q(D)))$ is stable.

Lemma 2.7 Let I is an α -ideal in the polynomial ring $S = K[x_1, x_2, ..., x_n]$ with $n \ge 2$. Then $I_{k \in (D)}$ is stable.

Proof As 1 is an α -ideal in **S**. So, the irreducible irredundant primary decomposition of 1 is;

$$\mathbf{I} = \bigcap_{i=1}^{n} \mathbf{Q}_{i'}$$

where each $\mathbf{Q}_i = (\mathbf{x}_i^{\alpha_1}, \dots, \mathbf{x}_i^{\alpha_{r_i}})$ with $3 \le r_i \le n$ for all $i \in \{1, 2, \dots, s\}$. Hence from 2.6, it immediately follows that $I_{\mathbf{x} \in \{1\}}$ is stable.

Next we recall a proposition from [6].

Proposition 2.8 Let I be a monomial ideal and $e \ge \deg(1)$ an integer such that I_{ae} is stable. Then $reg(1) \le e$.

Theorem 2.9 Let $I \in S$ be an α -ideal. Then $\operatorname{reg}(I) \leq \tilde{q}(I)$.

Proof By the previous Lemma 2.7, we have $I_{\underline{a}\underline{q}(\underline{I})}$ stable, as $\underline{c}(\underline{I}) \ge \underline{deg}(\underline{I})$. Hence we get $\underline{reg}(\underline{I}) \le \underline{q}(\underline{I})$ by proposition 2.8.

Remarks2.10 It should be noted that α -ideal is a monomial ideal whose associated prime ideals are totally ordered under inclusion. In [1] and [6], the authors have given the bound for the regularity of such ideals that is

reg(I) < g(I) = m(I) (deg(I) - 1)+1. Therefore, we have reg(I) $\leq q(I)$ for α -ideals I. But it is worth noting that our bound $\tilde{q}(I) \leq q(I)$, for instance the α -

ideals $I = (x_1, x_2) \cap (x_1^2, x_2^2, x_3), \tilde{q}(I) = 3 < q(I) = 4.$

REFERENCES

- S. Ahmed, I. Anwar, Upper bound on the regularity of ideals of Borel Type, Communications in Algebra 36(2008), 670-673.
- 2. D. Bayer, D. Mumford, What can computed in Algebraic Geometry? Computational Algebraic Geometry and Computational Algebra, Symposia Mathematica XXXIV (1993), 1-48.
- W. Bruns, J. Herzog, Cohen Macaulay rings, Vol. 39, Cambridge studies in advanced mathematics, revised edition, 1998.
- G. Caviglia, E. Sbarra, Charateristic-free bounds for the Catelnuovo Mumford regularity, Compositio Math. 141(2005), no. 6, 1365-1373.
- 5. M. Cimpoeas, A stable property of Borel type ideals, Communications in Algebra, 36(2008), 674-677
- D. Eisenbud, A. Reeves, B. Totara, Initial ideals of Veronese Subrings, Adv. In Math., 109(1995), 168-187.
- S. Eliahou, M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129(1990), 1-25
- E. Mayr, A. Meyer, The complexity of the word problem for communication semigroups and polynomials ideals, Adv. In Math 46(1982), 305-329.
- D. Popescu, Estremal Betti Numbers and regularity of Borel type ideals, Bull. Math. Soc. Sc. Math. Roumanie, Vol. 48(2005), 65-72.
- R. H. Villarreal, Monomial Algebra, Marcel Dekker Inc, New York, 2001.